

    
      
          
            
  
CAMELS Multifield Dataset (CMD)

[image: CMD logo]
CMD is a publicly available collection of hundreds of thousands 2D maps and 3D grids containing different properties of the gas, dark matter, and stars from more than 2,000 different universes. The data has been generated from thousands of state-of-the-art (magneto-)hydrodynamic and gravity-only N-body simulations from the CAMELS project.


[image: _images/movie.gif]

Examples of 2D maps from CMD. From top-left to bottom right: gas temperature, gas pression, neutral hydrogen mass, electron number, metallicity, gas mass, dark matter mass, total mass, stellar mass, magnetic fields, magnesium over iron, gas velocity, and dark matter velocity. Each map is characterized by the value of the cosmological parameters (\(\Omega_{\rm m}\) and \(\sigma_8\)) and the astrophysical parameters (\(A_{\rm SN1}\), \(A_{\rm SN2}\), \(A_{\rm AGN1}\), and \(A_{\rm AGN2}\)).



Each 2D map and 3D grid has a set of labels, or parameters, associated to it. Understanding the relation between the data and the labels will help cosmologists to decipher the mysteries of our own Universe.
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Description


Simulations

CMD has been generated from thousands of state-of-the-art (magneto-)hydrodynamic and gravity-only N-body simulations from the CAMELS project [https://www.camel-simulations.org]. CMD data can be classified into three groups, that indicate the type of simulation used to create the data:


	IllustrisTNG. These magneto-hydrodynamic simulations follow the evolution of gas, dark matter, stars, and black-holes. They also simulate magnetic fields. CMD uses 1,000 of these simulations.


	SIMBA. These hydrodynamic simulations follow the evolution of gas, dark matter, stars, and black-holes. CMD uses 1,000 of these simulations.


	N-body. These gravity-only N-body simulation only follow the evolution of dark matter. Thus, they do not model astrophysical processes such as the formation of stars and the feedback from black-holes. There is an N-body simulation for each (magneto-)hydrodynamic simulation. CMD uses 2,000 of these simulations.






Structure

CMD provides the following data generated from the above simulations:

IllustrisTNG


	15,000 2D maps per field for 13 different fields. 195,000 2D maps in total.


	15,000 3D grids per field for 13 different fields. 195,000 3D grids in total.




SIMBA


	15,000 2D maps per field for 12 different fields. 180,000 2D maps in total.


	15,000 3D grids per field for 12 different fields. 180,000 3D grids in total.




Nbody


	30,000 2D maps of one single field. 30,000 2D maps in total.


	2,000 3D grids of one single field. 30,000 3D grids in total.




The table below lists the 13 types of fields represented by the data and provides basic information about them.














	Field

	Prefix

	IllustrisTNG

	SIMBA

	Nbody

	Units





	
	
	2D maps

	3D grids

	2D maps

	3D grids

	2D maps

	3D grids

	


	Gas density

	Mgas

	15,000

	15,000

	15,000

	15,000

	–

	–

	\((M_\odot/h)/({\rm kpc}/h)^A\)



	Gas velocity

	Vgas

	15,000

	15,000

	15,000

	15,000

	–

	–

	km/s



	Gas temperature

	T

	15,000

	15,000

	15,000

	15,000

	–

	–

	Kelvin



	Gas pressure

	P

	15,000

	15,000

	15,000

	15,000

	–

	–

	\(M_\odot{\rm (km/s)^2/kpc^3}\)



	Gas metallicity

	Z

	15,000

	15,000

	15,000

	15,000

	–

	–

	dimensionless



	Neutral hydrogen density

	HI

	15,000

	15,000

	15,000

	15,000

	–

	–

	\((M_\odot/h)/({\rm kpc}/h)^A\)



	Electron number density

	ne

	15,000

	15,000

	15,000

	15,000

	–

	–

	\((1/h)//({\rm kpc}/h)^A\)



	Magnetic fields

	B

	15,000

	15,000

	–

	–

	–

	–

	Gauss



	Magnesium over Iron

	MgFe

	15,000

	15,000

	15,000

	15,000

	–

	–

	dimensionless



	Dark matter density

	Mcdm

	15,000

	15,000

	15,000

	15,000

	–

	–

	\((M_\odot/h)/({\rm kpc}/h)^A\)



	Dark matter velocity

	Vcdm

	15,000

	15,000

	15,000

	15,000

	–

	–

	km/s



	Stellar mass density

	Mstar

	15,000

	15,000

	15,000

	15,000

	–

	–

	\((M_\odot/h)/({\rm kpc}/h)^A\)



	Total matter density

	Mtot

	15,000

	15,000

	15,000

	15,000

	30,000

	30,000

	\((M_\odot/h)/({\rm kpc}/h)^A\)



	
	
	
	
	
	
	
	
	


	Total

	
	195,000

	195,000

	180,000

	180,000

	30,000

	30,000

	





where \(M_\odot\) represents the mass of the Sun, km/s stands for kilometers per second, \(h\) is the reduced Hubble constant, that in all CMD is fixed to 0.67, and \({\rm kpc}\) stands for kiloparsec (3,260 light years). The coefficient \(A\) is 2 for 2D maps and 3 for 3D grids.


Note

All 2D maps have \(256^2\) pixels and cover a periodic area of \((25~h^{-1}{\rm Mpc})^2\) at redshift 0. The 3D grids contain \(128^3\), \(256^3\) or \(512^3\) voxels over a volume of \((25~h^{-1}{\rm Mpc})^3\) and are at redshifts 0, 0.5, 1, 1.5, and 2.



We show an example of how the IllustrisTNG images look like for the different fields:

[image: _images/multifield.png]
where from top-left to bottom-right: gas density, gas velocity, gas temperature, gas pressure, dark matter density, dark matter velocity, electron number density, magnetic fields, stellar mass density, neutral hydrogen mass density, gas metallicity, and magnesium over iron ratio.

These images show different properties of the gas, dark matter, and stars in a given Universe. Determining the value of the cosmological parameters from these images will help us to decode the true value of our own Universe, allowing us to unveil some of the biggest mysteries in fundamental physics.



Labels

Each 2D map and 3D grid has a set of labels attached to it:


	\(\Omega_{\rm m}\). This is a cosmological parameter that represents the fraction of matter in the Universe.


	\(\sigma_8\). This is a cosmological parameter that controls the smoothness of the distribution of matter in the Universe.


	\(A_{\rm SN1}\) and \(A_{\rm SN2}\). These are two astrophysical parameters that controls two properties of supernova feedback.


	\(A_{\rm AGN1}\) and \(A_{\rm AGN2}\). These are two astrophysical parameters that control two properties of black-hole feedback.




The data from the IllustrisTNG and SIMBA simulations are described by all the above parameters, while the 2D maps and 3D grids generated from the N-body simulations are only characterized by the cosmological parameters \(\Omega_{\rm m}\) and \(\sigma_8\).



2D maps

The generic name of the files containing the maps is Maps_prefix_sim_LH_z=0.00.npy, where prefix is the word identifying each field (see table above), sim can be IllustrisTNG, SIMBA, Nbody_IllustrisTNG, or Nbody_SIMBA.


Note

In the case of the Nbody data we add an extra word, IllustrisTNG or SIMBA, to characterize the matching data from the (magneto-)hydrodynamics simulations. See Matching data for further details.



For instance, the file containing the gas density maps of the IllustrisTNG simulations is Maps_Mgas_IllustrisTNG_LH_z=0.00.npy. The 2D maps are stored as .npy files, and can be read with the numpy load routine. For instance, to read the SIMBA gas temperature maps do:

import numpy as np

# name of the file
fmaps = 'Maps_T_SIMBA_LH_z=0.00.npy'

# read the data
maps = np.load(fmaps)





The file contains 15,000 maps with \(256^2\) pixels each.

We note that the name of the files for the Nbody 2D maps is slighty different to reflect the (magneto-)hydrodynamic simulation they should be matched on:

The values of the cosmological and astrophysical parameters characterizing the maps of a given field are given in params_sim.txt where sim can be IllustrisTNG, SIMBA or Nbody. These files can be read as follows:

import numpy as np

# name of the file
fparams = 'params_SIMBA.txt'

# read the data
params = np.loadtxt(fparams)





The file contains 1,000 entries with 6 values per entry. The first and second entries are the values of \(\Omega_{\rm m}\) and \(\sigma_8\), while the rest represent the values of the astrophysical parameters: \(A_{\rm SN1}\), \(A_{\rm AGN1}\), \(A_{\rm SN2}\), \(A_{\rm AGN2}\).


Note

In the case of the Nbody maps, only the first and second columns (the ones containing the values of \(\Omega_{\rm m}\) and \(\sigma_8\)) are relevant. The other 4 columns can be disregarded (because the Nbody simulations do not model supernovae and black holes). They are only kept to standardize the training of the networks.



The values of the cosmological and astrophysical parameters of a given map can be found as

map_number = 765
params_map = params[map_number//15]





See this colab [https://colab.research.google.com/drive/1bT1OXxEPi2IaFs7sJn96M7scFtiKLygj?usp=sharing] for further details on how to manipulate the images and the values of the parameters.


Note

2D maps can be generated from 3D grids by taking slides and projecting along a given axis. See this colab [https://colab.research.google.com/drive/14RuMYCUPeR1jHGQNOXdBxQc5LKEGCmeb?usp=sharing] for an example.





3D grids

The generic name of the files containing the 3D grids is Grids_prefix_sim_LH_grid_z=redshift.npy, where prefix is the word identifying each field (see table above), sim can be IllustrisTNG, SIMBA, Nbody_IllustrisTNG, or Nbody_SIMBA, grid can be 128, 256, or 512 and redshift can be 0, 0.5, 1, 1.5 or 2.


Note

In the case of the Nbody data we add an extra word, IllustrisTNG or SIMBA, to characterize the matching data from the (magneto-)hydrodynamics simulations. See Matching data for further details.



For instance, the file containing the 3D gas metallicity of the IllustrisTNG simulations on a grid with 256^3 voxels at redshift 0 is Grids_Z_IllustrisTNG_LH_256_z=0.00.npy. The 3D grids are stored as .npy files, and can be read with the numpy load routine. For instance, to read the SIMBA neutral hydrogen mass density at redshift 1.0 with a grid of 128^3 voxels do:

import numpy as np

# name of the file
fgrids = 'Grids_HI_SIMBA_LH_128_z=0.00.npy'

# read the data
grids = np.load(fgrids)





The file contains 1,000 grids with \(128^3\) voxels each. For large files (e.g. those containing the grids with \(512^3\) voxels) it is better to read the files in a slightly different way, to avoid running out of RAM memory:

import numpy as np

# name of the file
fgrids = 'Grids_Mcdm_Nbody_LH_512_z=0.00.npy'

# read the data
grids = np.load(fgrids, mmap_mode='r')

# take the first 3D grid
grids[0]

# multiply all the grids from numbers 672 to 700 by 3
grids[672:700]*3





The values of the cosmological and astrophysical parameters characterizing the maps of a given field are given in params_sim.txt where sim can be IllustrisTNG, SIMBA or Nbody. These files can be read as follows:

import numpy as np

# name of the file
fparams = 'params_SIMBA.txt'

# read the data
params = np.loadtxt(fparams)





The file contains 1,000 entries with 6 values per entry. The first and second entries are the values of \(\Omega_{\rm m}\) and \(\sigma_8\), while the rest represent the values of the astrophysical parameters: \(A_{\rm SN1}\), \(A_{\rm AGN1}\), \(A_{\rm SN2}\), \(A_{\rm AGN2}\).


Note

In the case of the Nbody maps, only the first and second columns (the ones containing the values of \(\Omega_{\rm m}\) and \(\sigma_8\)) are relevant. The other 4 columns can be disregarded (because the Nbody simulations do not model supernovae and black holes). They are only kept to standardize the training of the networks.



The value of the cosmological and astrophysical parameters of a given grid can be found as

grid_number = 821
params_map  = params[map_number]







Symmetries

Each 2D map and 3D grid from CMD has a set of labels associated to it: two cosmological parameters and four astrophysical parameters (only in the case of data from IllustrisTNG and SIMBA simulations). These labels will remain the same if


	rotations


	translations


	parity




transformations are applied to the data.

Another important thing to take into account is that the data is periodic in all dimensions. For instance, in the case of 2D maps

import numpy as np

# name of the file
fmaps = 'Maps_HI_IllustrisTNG_LH_z=0.00.npy'

# read the data
maps_HI = np.load(fmaps)

# take the map number 36
map_HI = maps_HI[36]

# the pixel map_HI[45,89] is adjacent to the pixel map_HI[46,89]
# the pixel map_HI[145,99] is adjacent to the pixel map_HI[145,98]
# the pixel map_HI[76,0] is adjancent to the pixel map_HI[76,255]
# the pixel map_HI[255,12] is adjancent to the pixel map_HI[0,12]






Note

When using convolutional neural networks, one can take advantage of this property by using periodic padding.





Matching data

There are several ways to match CMD.


	The 2D maps and 3D grids can be matched across fields within the same simulation type. For instance, the maps number 2786 of the files Maps_ne_IllustrisTNG_LH_z=0.0.npy and Maps_B_IllustrisTNG_LH_z=0.0.npy represent the same region of the same simulation. The only difference is that the first map will show the electron abundance while the second shows the magnetic fields. The same thing applies to the 3D grids. For instance, the grids number 621 of the files Grids_HI_SIMBA_LH_128_z=0.0.npy and Grids_Mgas_SIMBA_LH_128_z=0.0.npy represent the same volume of the same simulation with the only difference that the first grid shows the neutral hydrogen mass density while the second contains the gas density.





Warning

This matching only applies to data within the same simulation. E.g. the files Maps_Mcdm_IllustrisTNG_LH_z=0.0.npy do not have any correspondence with the maps in the file Maps_Mtot_SIMBA_LH_z=0.0.npy.




	The 3D grids can be matched across resolution within the same field and redshift. For instance, the grids number 167 of the files Grids_Vcdm_SIMBA_LH_128_z=1.0.npy and Grids_Vcdm_SIMBA_LH_256_z=1.0.npy represent exactly the same field over the same volume with the only difference that the first contains \(128^3\) voxels while the second has \(256^3\) voxels. Knowing this mapping is important for the Superresolution application.


	The 2D maps and 3D grids can be matched between (magneto-)hydrodynamic and N-body simulations. For instance, the maps number 7413 of the files Maps_Mtot_IllustrisTNG_LH_z=0.0.npy and Maps_Mtot_Nbody_IllustrisTNG_LH_z=0.0.npy represent the same region of the same field (total matter), with the only difference that the first map was generated from an IllustrisTNG magneto-hydrodynamic simulation while the second one is from a gravity-only N-body simulation. Knowing this mapping is important to be able to quantify that impact of astrophysical processes on a given task.





Warning

This mapping only applies to the total matter field.




	The 3D grids can be matched across cosmic time in both the (magneto-)hydrodynamic and the N-body simulations. For instance, the grids number 923 Grids_Vgas_SIMBA_LH_512_z=0.0.npy and Grids_Vgas_SIMBA_LH_512_z=2.0.npy represent the gas velocity of the same universe just at two different times: \(z=0\) in the first grid and \(z=2\) in the second grid.





Note

We do not recommend using the above time matching for the 2D maps. The reason is that in a simulation, particles will move with time, so particles that are in a given map at a given time may move to another map at a different time. While this is not a problem for the 3D grids, it may be a challenge for the 2D maps.



We note that the above three matchings can be combined. For instance, in the N-body to hydro application we want to find the mapping between the total matter from an N-body simulation and a given field from a (magneto-)hydrodynamic simulation. In this case, the grids number 714 of the files Grids_T_SIMBA_LH_256_z=0.0.npy and Grids_Mtot_Nbody_SIMBA_LH_256_z=0.0.npy represent the same region at redshift 0, the first grid will contain the gas temperature from the hydrodynamic simulation while the second is the total matter field from the equivalent N-body simulation.



Storage

Each pixel of a 2D map and each voxel of a 3D grid is stored as a float, i.e. it occupies 4 bytes.

A single 2D map that has \(256^2\) pixels will take \(256^2\times4=0.25\) Mb. CMD is organized into files that contain 15,000 maps per field. Those files require 3.75 Gb. Since there are 27 of those files in CMD (13 for IllustrisTNG, 12 for SIMBA, and 1+1 for N-body), downloading all 2D maps from CMD requires ~100 Gb.

A single 3G grid with \(N^3\) voxels will take \(N^3\times4\) bytes, i.e. 8 Mb for \(N=128\), 64 Mb for \(N=256\), or 512 Mb for \(N=512\). CMD is organized into files that contain 1,000 3D grids for each field. Each of those files will occupy 7.8 Gb (\(N=128\)), 62.5 Gb (\(N=256\)), and 500 Gb (\(N=512\)). All CMD files containing 3D grids at a given resolution and redshift will take 211 Gb, 1.65 Tb, and 13.2 Tb for \(N=128, 256, 512\), respectively. All files at all redshifts and resolutions will take 75.2 Tb.





            

          

      

      

    

  

    
      
          
            
  
Download

CMD data can be downloaded in two different ways:


	Via globus [https://app.globus.org/file-manager?origin_id=1910cb10-4ba8-11ec-a516-b537d6c07c1d&origin_path=%2F].


	Via  url [https://users.flatironinstitute.org/~fvillaescusa/priv/DEPnzxoWlaTQ6CjrXqsm0vYi8L7Jy/CMD].





Note

Transfering the data with the url is simple and convenient, but it can also be slow and unstable, in particular for the large files. We thus recommend using globus as it is the fastest and more reliable way to transfer the data.




Structure

CMD data is organized as follows:


	2D_maps. This folder contains 2 subfolders:


	data. It hosts all files with the 2D maps and the values of the cosmological and astrophysical parameters.


	inference. It hosts the codes and network weights used to perform parameter inference with CMD.






	3D_grids. This folder only contains 1 subfolder:


	data. All files with the 3D grids and the values of the cosmological and astrophysical parameters are here.








The total data volume of the 2D maps is approximate 100GB, and of the 3D grids is of 75TB.

The image below shows a scheme with the way the data is organized:

[image: _images/Diagram.png]




            

          

      

      

    

  

    
      
          
            
  
Parameter Inference

Below we describe this task and the benchmark model. We also discuss the main problems and challenges involved in this task.


Description

One of the most obvious applications of CMD is parameter inference. Each 2D map and 3D grid is characterized by 6 numbers: two cosmological parameters describing fundamental properties of the Universe and four astrophysical parameters that quantify the efficiency of astrophysical processes supernova explosions or feedback from black holes. The goal of this application is to develop robust models that can infer the value of the two cosmological parameters from the data with the highest accuracy.



Benchmark

Below we describe the benchmark model for this task. We note that this only applies to 2D maps.


Requisites


	python3


	numpy


	Pytorch [https://pytorch.org]


	optuna [https://optuna.org]






Organization

The folder containing the codes and weights is called benchmark, and is located within the 2D_maps folder. Inside it, there are three folders called scripts, containing the codes used to train and test the networks, databases with the optuna databases and weights, which contains the weights of the networks.



scripts

This folder contains the following codes:


	architecture.py. This script contains different architecture models.


	data.py. This script processes the data to train the networks.


	train.py. This is the code used to train the network.


	test.py. This is the code used to test the network.




To train a new model on a given field, or a multifield, follow these steps:


	Open the code train.py and set the value of the different parameters in the INPUT section.


	Run the code: python train.py. Note that when using optuna, several trials can be run in parallel (see the optuna documentation for details).


	The code will output an optuna database, and will save the losses and weights of each of the considered trials.




To test a model on a given field(s), or a multifield, follow these steps:


	Open the code test.py and set the value of the different parameters in the INPUT section.


	Run the code: python test.py.


	The code will generate a file with true value of the parameters, together with the mean and standard deviation of the posterior for each parameter.




This colab [https://colab.research.google.com/drive/1-BmkA8JSc36O8g9pj7FenD1YSLKqjQR3?usp=sharing] shows an example on how to train and test a model using these scripts.



databases

We use the optuna software to find the best value of the hyperparameters (learning rate, weight decay…etc) of one particular model. Typically, for each field, we perform 50 trials, where a trial corresponds to the training carried out with one particular choice of the value of the hyperparameters. This folder contains the databases created by optuna with the information about the different trials for the different simulation types.

The generic name of one of these files is sim_o3_field_all_steps_500_500_o3.db where sim can be IllustrisTNG, SIMBA, or Nbody, field is the considered field (can be several fields together). In some cases we smooth out the fields with a Gaussian kernel with width width (in pixel units). The generic name of these files is sim_o3_field_all_steps_500_500_o3_smoothing_width.db.

These files can be read with optuna package, and two arguments are needed:


	study_name. For all our databases, this variable is set to wd_dr_hidden_lr_o3.


	storage. This should be set to the a sqlite database with the name of the file, e.g. sqlite:////home/fvillaescusa/CMC/2D_maps/benchmark/databases/SIMBA_o3_HI_all_steps_500_500_o3.db




We provide an example on how to read the information of these files in this colab [https://colab.research.google.com/drive/1ab79y_nIr2JkkgtT_QJhjLTJYNjY9M0B?usp=sharing].


Note

The databases files are very light (typically less than 1 Mb each), so they all can be downloaded easily. The files containing the network weights are however bigger (~100 Mb), so it may be a good idea to only download the weights for the best model or the top 5 models.





weights

This folder contains the weights of all the models trained. Thus, for each field, there will be at least 50 different files containing the weights of the 50 different trials considered. The generic name of these files is weights_sim_field_trialnumber_all_steps_500_500_o3.pt, where sim can be IllustrisTNG, SIMBA, or Nbody, field is the name of the considered field (can be several of them), and trialnumber is the trial number. In the cases where the neural network is trained on fields that are smoothed with a Gaussian kernel, the generic name of the files is weights_sim_field_trialnumber_all_steps_500_500_o3_smoothing_width.pt, where width is the width of the Gaussian kernel in pixel units.

These files can be read by Pytorch routines once the architecture is specified. In all the cases, the architecture employed is o3_err (see architecture.py from the released codes). We provide an example on how to read these files in this colab [https://colab.research.google.com/drive/18Bbwb30m1dqFccAZlUsJPNaH9iTNOibS?usp=sharing].




Challenges

The results obtained with the above model were very promising. The networks were able to determine the value of the cosmological parameters with a few percent accuracy. However, some problems raised up. The most important was that for some fields, the model was not robust. For instance, if the model was trained on 2D maps from the IllustrisTNG simulations, it worked ery well when tested on maps from those simulations, but it failed when tested on 2D maps from the SIMBA simulations.

We think the four main challenges for the parameter inference task are:


	Build models to infer the value of the cosmological parameters that are more accurate than the above benchmark.


	Build models that trained on one suite of simulations (e.g. IllustrisTNG) can infer the correct cosmology when tested on the other suite (e.g. SIMBA).


	Determine the minimum set of fields than contain 90% and 95% of the cosmological and astrophysical information.


	Understand what operation(s) is the network performing for each different field and in multifield in order to determine the value of the cosmological parameters.




Solving the above challenges will help cosmologists to extract the maximum robust information from cosmological surveys, unveiling the laws and constituents of our own Universe.





            

          

      

      

    

  

    
      
          
            
  
Emulators

Since each 2D map and 3D grid is characterized by a set of 6 parameters, one natural application of CMD is to build emulators, i.e.


\[\textbf{X}=f(\vec{\theta})\]

where \(\textbf{X}\) can be a summary statistics (e.g. the probability distribution function of the pixels in a 2D map), or can be the entire 2D map or 3D grid. \(\vec{\theta}\) is a vector with the value of the parameters (e.g. \(\vec{\theta}=\{\Omega_{\rm m}, \sigma_8, A_{\rm SN1}, A_{\rm SN2}, A_{\rm AGN1}, A_{\rm AGN2} \}\)) and \(f\) is the function relating the parameters with the data.

The idea is to use neural networks, or other methods, to approximate \(f\). CMD provides a significant amount of data to achieve this task.




            

          

      

      

    

  

    
      
          
            
  
N-body to hydro

For a fixed volume, mass, and spatial resolution, running (magneto-)hydrodynamic simulations is much more computationally expensive than running a gravity-only N-body simulations.

This is a significant limitation and the reason why even today, we cannot run hydrodynamic simulations over scales of billions of ligh years, the ones that would be needed to analyze data from cosmological surveys. On the other hand, N-body simulations can be run over such large volumes with enough resolution.

One possible way around this is to learn how to paint gas and stars into the dark matter field simulated by N-body simulations. This way, we could simulate the result of a full (magneto-)hydrodynamic simulation from the output of a computationally cheap N-body simulation.


Note

This mapping can be done for a fixed cosmological and astrophysical model or can be done as a function of cosmology and astrophysics using CMD labels.






            

          

      

      

    

  

    
      
          
            
  
Superresolution

Cosmological simulations can be run at different mass and spatial resolutions. For a fixed volume, the higher the mass and spatial resolution the more computationally expensive the simulation will be. This is a major bottleneck for current numerical simulations. One possible way around this is to run a low resolution simulation and increase its resolution a-posteriori using some sophisticated method.

CMD provides for each field and redshift three different 3D grids of the same spatial distribution for N-body simulations but also for (magneto-)hydrodynamic simulations. That data can be used to train and test superresolution methods that can tackle this important challenge.


Warning

We note that the three different sets of grids available in CMD have different spatial resolution but the simulations used to create them have the same mass resolution. Previous works have changed both mass and spatial resolution in data from N-body simulations: 2001.05519 [https://arxiv.org/abs/2001.05519], 2010.06608 [https://arxiv.org/abs/2010.06608], 2105.01016 [https://arxiv.org/abs/2105.01016].






            

          

      

      

    

  

    
      
          
            
  
Time evolution

Cosmological simulations typically start at high redshift (early cosmic times) and finish at redshift z=0 (present time). Several snapshots at different cosmic times are stored before the simulation finishes, and are used to post-process the data and to analyze the result of the simulation. In general, the more snapshots that can be saved the better. On the other hand, each snapshot occupies disk space, so in practice a limited number of snapshots can be saved.

Similarly to the emulation task, it would be desirable to develop a method that takes as input a set of snapshots at some cosmic times and returns new snapshots at different times. This way, the main limitation associated to this problem will be fixed as snapshots can easily be produced a-posteriori.

CMD provides a rich dataset with plenty of data at different cosmic times for N-body and state-of-the-art (magneto-)hydrodynamic simulations.


Note

2012.05472 [https://arxiv.org/abs/2012.05472] carried out this task using N-body simulations.






            

          

      

      

    

  

    
      
          
            
  
Science

Our Universe is a strange place. All the things we know, from atoms to stars, only constitute about 5% of the Universe’s content. The rest is split among dark matter (~25%) and dark energy (~70%). We believe dark matter should be some kind of elementary particle responsible to shaping up the large-scale structure of the Universe. On the other hand, we know very little about dark energy, besides being responsible of the current accelerated expansion of the Universe.

In the most accepted theoretical model, the Universe started with an explosion called the Big Bang. The fluctuations in the primordial plasma, originating from quantum fluctuations during cosmic inflation, were amplified by gravity; dark matter started clustering in those primordial gravitational potential wells, making them deeper and more massive, which in turn attracted more dark matter and gas to them. The gas fell into these potential wells and became cooler and denser, until stars were formed. This process gave rise to the abundance and spatial distribution of galaxies we observe in the Universe.

This model is able to precisely explain a very large and diverse set of cosmological observations, from the temperature anisotropies in the early Universe to the spatial distribution of galaxies in the present Universe. The model has some free parameters describing fundamental properties of the Universe, such as its age, geometry, composition…etc. Determining the values of these parameters with the highest accuracy is one of the main goals of modern cosmology. Knowing the values of these parameters as precisely as possible will allow us to shed light on some of the most fundamental questions in physics, such as: What is the nature of dark energy? What is the sum of the neutrino masses? How fast is the Universe expanding?

There is a huge amount of information in cosmological observations about the values of the cosmological parameters that is currently not being extracted since the non-linear evolution of cosmic structures gives rise to very complicated, and poorly understood, relationships between observables and these fundamental parameters. Cosmologists usually rely on summary statistics of observed data in order to describe those relationships, but a lot of information is lost in the process.




            

          

      

      

    

  

    
      
          
            
  
Terminology

Here we describe briefly some concepts that non-cosmologists may not be familiar with.

Dark matter. All matter we know (atoms, molecules, quarks…etc) only represent about 15% of the matter present in the Universe. The other 85% is called dark matter, and it is believed to only be subject to, and interact with other types of matter through, the force of gravity but not other forces. The effects of dark matter has been observed in many different systems, but the nature and properties of it is still a mystery.

Total matter. We define total matter as the sum of mass in dark matter, gas, stars, and black holes.

Dark energy. The Universe is currently accelerating its expansion. The substance responsible for that behaviour is called dark energy, and its nature and properties are one of the biggest mysteries in modern physics. Furthermore, dark energy represents around 70% of the full mass-energy content of the Universe. Learning more about dark energy is one of the main goals of modern cosmology.

Cosmological parameters. Parameters describing fundamental properties of the Universe such as its age, geometry, composition…etc. In CMD, we only consider two of them: \(\Omega_{\rm m}\) and \(\sigma_8\).

\(\Omega_{\rm m}\): The fraction of the mass-energy density in the Universe in the form of total matter. Higher values of this parameter indicate that the fraction of dark matter mass plus gas mass plus stars mass plus black holes mass is higher. Since we are considering the Universe to be flat, a higher value of \(\Omega_{\rm m}\) will imply a lower fraction of the mass-energy content of the Universe in the form of dark energy.

\(\sigma_8\): The variance of the total matter density field, or the amplitude of its fluctuations. This parameter quantifies how clustered the considered field is. For instance, a very homogeneous and isotropic field will have a low value of \(\sigma_8\), while if the fields exhibit large variations (e.g. some regions with very high and others with very low concentration of matter), this value will be larger.

Astrophysical parameters. Parameters describing astrophysical effects such as supernova and active galactic nucleus (AGN) feedback.

Supernova feedback. This refers to the energy and momentum released by supernova explosions to their surroundings.

AGN feedback. This refers to the energy and momentum released by active galactic nuclei (powered by supermassive black holes) to their surroundings.

Astrophysical effects. Also called baryonic effects, they refer to astrophysical processes such as supernova explosions or feedback from black holes. The physics of these physical processes is poorly known, but it is known that they can affect the properties of gas, dark matter, stars, and black holes on small scales.

Megaparsec. 1 megaparsec correspond to 1 million parsec. 1 parsec is 3.26 light years, i.e. the distance traveled by light over 3.26 years: 30.9 trillion kilometers or 19.2 trillion miles.

Redshift. In cosmology, redshift is commonly used as a measure of time. Redshift 0 corresponds to current time, while higher redshifts correspond to more distant times in the past. For instance, redshift 1 corresponds to around 8 billion years ago, or the epoch when the Universe was approximately half as old as it is today.

Subgrid physics. Cosmological hydrodynamic simulations sample very large cosmological distances of tens or hundreds of millions of light years. Unfortunately, astrophysical processes such as the formation of stars and black holes, supernova explosions, feedback from black holes…etc happen on much smaller scales that cannot be resolved in these simulations due to the very large dynamic range. In this case, these astrophysical processes are modelled in a phenomenological manner aimed at mimic the physics of these processes; this is called subgrid physics.

IllustrisTNG. This denotes data from cosmological magneto-hydrodynamic simulations run with the AREPO code (a code used to solve the gravity plus magneto-hydrodynamics equations), employing the same subgrid physics as the IllustrisTNG subgrid model, up to variations of the astrophysical parameters.

SIMBA. This denotes data from cosmological hydrodynamic simulations run with the GIZMO code (a code used to solve the gravity plus hydrodynamics equations), employing the same subgrid physics as the SIMBA subgrid model, up to variations of the astrophysical parameters.

Metallicity. In astronomy, all elements other than hydrogen and helium are called metals. The metallicity of a gas cloud, a galaxy or a star is the fraction of mass in metals in that system.

Magnesium over iron. Cosmic gas, stars and galaxies contain a fraction of their total mass in different elements, such as carbon, oxigen, magnesium, iron…etc. The ratio between the magnesium and iron, Mg/Fe, is an interesting quantity from the point of view of astrophysics. In CMD, we use it to see if we can extract cosmological information from it.
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License

MIT License

Copyright (c) 2019 Francisco Villaescusa-Navarro

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.




            

          

      

      

    

  

    
      
          
            
  
Help

For problems, questions and general help you can reach us at fvillaescusa@flatironinstitute.org or camel.simulations@gmail.com.

We would also love to hear if you would like we add more data to CMD, e.g. more fields, more redshifts, more simulations…etc.
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